

www.astesj.com 51

EAES: Extended Advanced Encryption Standard with Extended Security

Abul Kalam Azad*, Md. Yamin Mollah

Computer Science and Telecommunication Engineering, Noakhali Science and Technology University, Noakhali-3814, Bangladesh

A R T I C L E I N F O A B S T R A C T
Article history:
Received: 29 March, 2018
Accepted: 24 April, 2018
Online :20 May, 2018

 Though AES is the highest secure symmetric cipher at present, many attacks are now
effective against AES too which is seen from the review of recent attacks of AES. This paper
describes an extended AES algorithm with key sizes of 256, 384 and 512 bits with round
numbers of 10, 12 and 14 respectively. Data block length is 128 bits, same as AES. But
unlike AES each round of encryption and decryption of this proposed algorithm consists of
five stages except the last one which consists of four stages. Unlike AES, this algorithm uses
two different key expansion algorithms with two different round constants that ensure
higher security than AES. Basically, this algorithm takes one cipher key and divides the
selected key of two separate sub-keys: FirstKey and SecondKey. Then expand them through
two different key expansion schedules. Performance analysis shows that the proposed
extended AES algorithm takes almost same amount of time to encrypt and decrypt the same
amount of data as AES but with higher security than AES.

Keywords:
AES-256/384/512
EAES-256/384/512
Extended-AES
Network Security

1. Introduction

Communications among individual or organizations are
increasing day by day. Everyone wants to keep their private
information secure from any type of threats or being lost.
Cryptography achieves this goal to secure private information.
Schemes are being developed rapidly and frequently for
cryptography and attacks on those schemes are being developed
often too. New attacks are being strong, effective and attenuating
the security of existing cryptographic schemes.

Rijndael block cipher was proposed as AES by September 03,
1999 [1]. National Institute of Standards and Technology (NIST)
announced Rijndael block cipher as AES by Federal Information
Processing Standards Publication 197 (FIPS 197) by November
26, 2001. Several attacks were developed after the publication of
AES that are threatening for AES but not practically successful
on full AES. Until 2006, the best-known attacks were on 7 rounds,
8 rounds, and 9 rounds for 128-bit keys, 192-bit keys, and 256-bit
keys respectively [2]. However, in the recent time, many attacks
are close to successful on AES. For the reduced 8-round version
of AES-128, the first known-key distinguishing attack was
released as a preprint in November 2009 [3]. It works with a
memory complexity of 232, and a time complexity of 248. In 2011

[4], the first key-recovery attack on full AES was developed. This
biclique attack is four times faster than the brute force attack. It
requires 2126.2, 2190.2 and 2254.6 operations to recover an AES-128,
AES-192 and AES-256 key respectively. This result has been
further improved to 2126.0, 2189.9 and 2254.3 operations for AES-128,
AES-192 and AES-256 key respectively [5], which are the current
best results in key recovery attack against AES.

As intended to develop AES with extended key sizes for more
security against recently developed attacks by keeping the
performance almost similar to that of AES. Thus proposed
algorithm becomes more complex for Interpolation attack, Basic
attack, and Square attack. Differential and Linear cryptanalysis
will be inefficient for this algorithm too. Since this algorithm uses
two different keys derived from one key, it will be more complex
and impossible to crack in spite of having known plaintext-
ciphertext pairs available. The throughput of the proposed
algorithm is nearly similar to that of AES. It is shown that for a
100KB text file, encryption time taken by AES-128 is 0.100s
where for EAES-256 it is the same amount of time. Performances
of other versions of EAES are evaluated and they are effective too.

The rest of the paper is organized as follows: Section 2 briefly
explain related research works, Section 3 describes the proposed
EAES algorithm, Section 4 shows the performance analysis of

ASTESJ

ISSN: 2415-6698

*Abul Kalam Azad, Department of CSTE, NSTU, Email: ak_azad@nstu.edu.bd

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56 (2018)

www.astesj.com

https://dx.doi.org/10.25046/aj030307

http://www.astesj.com/
http://www.astesj.com/
https://dx.doi.org/10.25046/aj030307

A. K. Azad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56(2018)

www.astesj.com 52

EAES, Section 5 describes the strength of EAES against different
types of attacks and Finally, Section 6 concludes the paper.

2. Background

After the proposal of AES encryption by Rijndael, a large
number of research works has been done on it. An FPGA based
architecture for a new version of 512-Bit Advanced Encryption
Standard algorithm design and evaluation was proposed in [6]. It
(AES-512) uses both input and key block size of 512-bits which
makes it more resistant to cryptanalysis against the break of its
security. Throughput increased by 230% when compared with the
implementation of the original AES-128. But requires more
control logic blocks (CLBs) in implementation prospect than
existing AES.

An efficient parallel implementation and optimization of the
Advanced Encryption Standard (AES) algorithm based on the
Sunway TaihuLight was proposed in [7]. The Sunway TaihuLight
is a China’s independently developed heterogeneous
supercomputer [8] with peak performance over 100 Petaflops.
Specifically, they expanded the scale to 1024 nodes and achieved
the throughput of about 63.91 GB/s (511.28 Gbits/s). But with the
increase of input data the throughput grows from quick to slow
pattern.

A new efficient and novel approach to protect AES against
differential power analysis was proposed in 2015 [9]. The
implementation of this approach provides a significant
improvement in strength against differential power analysis with
a minimal additional hardware overhead. The efficiency of their
proposed technique was verified by practical results obtained
from real implementation on a Xilinx Spartan-II FPGA.

In 2016, an implementation of AES algorithm to overt fake
keys against counter attacks was proposed [10]. An approach to
overt the cryptographic key, when there is any counter attacks so-
called side-channel attacks (SCAs) are applied in order to break
the security of AES-128. Experimental results make sure the
strength of the proposed approach to successfully hide the true
cryptographic key. But it is more time consumptive than existing
AES.

Constructing key dependent dynamic S-box for AES block
cipher system was proposed in 2016 [11]. A new approach to
generating dynamic S-box which was constructed centered on
round key. Predefined static S-boxes pose a weak point for the
attackers to analyze certain ciphertext pairs. The new S-boxes
created were additionally dynamic, random and key dependent
which attempts to escalate the complexity of the algorithm and
furthermore mark the cryptanalysis more challenging. However,
the performance in terms of time and power consumption is not
examined and showed in this paper.

An implementation of AES-128 and AES-512 on
Apple mobile processor [12] was proposed in 2017 that uses 512
bits of data block size using key sizes of 128, 192, 256, 512 and
1024 bits. However, again the performance degrades with the
extension of key lengths.

3. Proposed Extended AES (EAES)

Advanced Encryption Standard (AES) is the most used and
most secure algorithm at present among other symmetric cipher
algorithms. But recently some sorts of attack such as biclique
attack are threatening for AES. AES uses key sizes of 128 bits,
192 bits and 256 bits [13]. The authors have developed an
algorithm almost similar to AES with some exceptions and double
in key sizes (i.e., key sizes of 256, 384 and 512 bits) and highly
secure than AES.

The proposed EAES algorithm has four parts: encryption,
decryption, key division and key expansion. It takes plaintext
block length of 128 bits as the existing AES. Every encryption
and decryption process goes through several numbers of rounds
according to their key sizes. This algorithm is named depending
on its key lengths as EAES-256, EAES-384, and EAES- 512. Key
sizes with corresponding round numbers are given in Table 1.

Table 1. Key sizes with corresponding round numbers of the cipher

Key Size (bits/bytes/words) Round Number (Nr)

256/32/8 10

384/48/12 12

512/64/16 14

3.1. Key Division

This part of the algorithm takes a cipher key and divides it into
two equal sub-keys in a simple way. The resulting two sub-keys
are named FirstKey and SecondKey. Size of both sub-keys can be
128, 192 and 256 bits since the cipher key can be 256, 384 and
512 bits. FirstKey has byte values that are in odd positions in the
cipher key and SecondKey has byte values that are in even
positions in the cipher key. Figure 1 shows an example of this key
division process where each letter is identified as a byte and the
cipher key is 256 bits or 32 bytes.

Figure 1 Key division example of the cipher key expansion

Two different key expansions are used for two sub-keys. Since
sub-key sizes are 128, 192 and 256 bits for cipher key sizes of 256,
384 and 512 bits respectively, the values of 𝑁𝑁𝑁𝑁 for both sub-keys
will be same as defined in AES. Sub-key expansions can be
described as follows:

1. At first, the sub-key is copied into the first 𝑁𝑁𝑁𝑁 words of
the array of expanded sub-key. In other words, the first
𝑁𝑁𝑁𝑁 words of the expanded sub-key are filled with the
sub-key which is also 𝑁𝑁𝑁𝑁 words long.

http://www.astesj.com/

A. K. Azad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56(2018)

www.astesj.com 53

2. Words in positions that are a multiple of 𝑁𝑁𝑁𝑁 go through
a more complex function which is denoted by 𝑔𝑔.

3. Every following word w[i] is equal to the XOR of the
previous word w[i – 1] and the word 𝑁𝑁𝑁𝑁 position earlier
w[i – 𝑁𝑁𝑁𝑁]. Note that i starts with 1, not 0.

4. The complex function 𝑔𝑔 takes a single word or 4 bytes
as input then passes it through the following three
subsequent operations:

a. RotWord: If the sub-key is FirstKey, it
performs a one-byte circular left shift on a
word. This means an input word [B1, B2, B3, B4]
transformed into [B2, B3, B4, B1]. If the sub-key
is SecondKey, it performs a one-byte circular
right shift on a word. This means an input word
[B1, B2, B3, B4] transformed into [B4, B1, B2,
B3].

b. SubWord: It performs a byte substitution on
each byte of its input word using the S-box used
for AES.

c. The result of operation b is XORed with a round
constant Rcon[i]. The round constant is a word
in which the first byte is different for different
round values but the rightmost three bytes
always remain constant. Round Constants are
different for FirstKey and SecondKey. Rcon[i]
values for FirstKey and SecondKey expansions
are given in Table 2. For FirstKey expansion,
the rightmost three bytes of the Round Constant
are always 0. Rcon[i] = (RC[i], 0, 0, 0) with
RC[1] = 1, RC[i] = 2 • RC[i – 1]. For
SecondKey expansion, among the right most
three bytes of the Round Constant, the first and
third bytes are equal to hexadecimal value {FF}
that means all bits of these two bytes are 1. The
second byte is equal to {00} that means all bits
of the second byte are 0. Rcon[i] = (RC[i], {FF},
0, {FF}) with RC[1] = 1, RC[i] = 3 • RC[i – 1]
= [2 ⊕ 1] • RC[i – 1] = (2 • RC[i – 1]) ⊕ RC[i
– 1]. The symbol “ • ” denotes multiplication
over the field 𝐺𝐺𝐺𝐺(28). The values of RC[i] in
hexadecimal form are shown below where the
value of “i” denotes round number.

5. If 𝑁𝑁𝑁𝑁 = 8 and (i – 4) is a multiple of 𝑁𝑁𝑁𝑁 then SubWord
is applied to w[i – 1] prior to the XOR.

Table 2. Rcon[i] values for FirstKey and SecondKey expansion

i
1 2 3 4 5 6 7 8 9 10 11 12 13 14

RC[i]
(for FirstKey) 01 02 04 08 10 20 40 80 1B 36 6C D8 AB 4D

RC[i]
(for

SecondKey)
01 03 05 0F 11 33 55 FF 1A 2E 72 96 A1 F8

Two different complex functions𝑔𝑔 used in the expansions of
FirstKey and SecondKey are shown in Figure 2.

Figure 2 Complex function g for a) FirstKey expansion and b) SecondKey

expansion

After successful expansion of the FirstKey and SecondKey,
each of the expanded FirstKey and SecondKey has a total of
𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 + 1) words. From these, every four words were used for
each round. The expanded FirstKey and SecondKey of 𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 +
1) words are shown in Figure 3.

Figure 3 Expanded a) FirstKey and b) SecondKey

3.2. Encryption or Cipher

The encryption process takes the plaintext input into the state
and passes it through a single stage at the beginning of the cipher
named AddFirstRoundKey. Then the state passed through 𝑁𝑁𝑁𝑁
rounds to get the expected ciphertext as output. Each of first 𝑁𝑁𝑁𝑁 −
1 rounds has five consecutive stages that are: SubBytes,
AddSecondRoundKey, ShiftRows, MixColumns, and
AddFirstRoundKey. The last round that means 𝑁𝑁𝑁𝑁th round has all
four stages except the MixColumns stage. Figure 6 shows full
encryption process with all 𝑁𝑁𝑁𝑁 rounds.

3.2.1 SubBytes, ShiftRows and MixColumns Transformation

These stages do the exact similar transformations as AES.

3.2.2 AddFirstRoundKey Transformation

In this stage, an 𝑁𝑁𝑁𝑁-word FirstRoundKey is added to the state
by simple bitwise XOR operation. A FirstRoundKey is 𝑁𝑁𝑁𝑁 words
length as the state. The FirstRoundKey is provided from the
FirstKey expansion function that expands the 𝑁𝑁𝑁𝑁 words FirstKey
into 𝑁𝑁𝑁𝑁(𝑁𝑁𝑁𝑁 + 1) words expanded FirstKey. This addition could
be described as a column-wise addition of the state matrix and the
FirstRoundKey. The following figure shows the addition of a
column of four bytes of the state and a word of the FirstRoundKey,
where i indicates the value𝑖𝑖 = (𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁). The lowest value of

http://www.astesj.com/

A. K. Azad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56(2018)

www.astesj.com 54

𝑁𝑁𝑁𝑁 is zero which indicates the first AddRoundKey stage without
round and the highest value is the last round number. Figure 4
shows the AddFirstRoundKey transformation.

Figure 4 Addition between FirstRoundKey and state

3.2.3 AddSecondRoundKey Transformation

In this stage, a 𝑁𝑁𝑁𝑁-word SecondRoundKey is added to the
state by simple bitwise XOR operation as like AddFirstRoundKey
stage but the only exception is that first 𝑁𝑁𝑁𝑁 words of the expanded
SecondKey are not added to the state. Figure 5 shows the
AddSecondRoundKey transformation.

Figure 5 Addition between SecondRoundKey and state

Encryption and decryption process of proposed algorithm are
shown in Figure 6.

Figure 6 Full round encryption and decryption process of proposed EAES

algorithm

3.3. Decryption or Inverse Cipher

Decryption process takes the ciphertext input into the state and
passes it through a single stage at the beginning of the inverse
cipher named AddFirstRoundKey. Then the state passed through
𝑁𝑁𝑁𝑁 rounds to get the expected plaintext as output. Each of first
𝑁𝑁𝑁𝑁 − 1 rounds has five consecutive stages that are: InvShiftRows,
AddSecondRoundKey, InvSubBytes, AddFirstRoundKey and
InvMixColumns. The last round that means 𝑁𝑁𝑁𝑁th round contains
all four stages except the InvMixColumns stage. Figure 6 shows
the total decryption process.

3.3.1 InvShiftRows, InvSubBytes and InvMixColumns
Transformation

These stages do the same transformations as AES.

3.3.2 AddFirstRoundKey and AddSecondRoundKey
Transformation

These two stages perform the similar operation as described
for encryption process except that they add the expanded round
keys to the state from the end of the expanded key.

4. Performance Analysis

Before the performance comparison of the proposed EAES
and original AES, AES algorithms were tested with the input-
output vector combination provided by National Institute of
Standards and Technology (NIST) [14]. Then times taken by AES
and the proposed algorithm for encryption and decryption of
different fixed plaintext sizes with their different key lengths were
measured. The authors used a system of the configurations listed
in Table 3 to test both of AES and proposed EAES algorithm.

Table 3. System configuration used for performance measurement

Device Name
Company: Acer, Model: Aspire

4749z (Laptop)
CPU Clock Rate 2.20 GHz, 2200MHz

RAM Size 4.00 GB

Hard Drive Size 1.00 TB

Processor Name Intel(R) Pentium(R) CPU B960 @ 2 Core(s)

Processor Generation 2nd Generation

Operating System Microsoft Windows 10 pro, Version:
10.0.10586 Build 10586.

Compiler Name: Code::Blocks, Type: GNU GCC

Programming Language used C

Plaintext and Ciphertext File Type .txt

Two plaintext files (i.e., .txt) were taken for performance
measurements. Sizes of chosen files are 100KB and 200KB. The
encryption and decryption process was done for three times and
then the time averaged. Table 4 shows the time taken for AES and
the proposed EAES algorithm with different key size to encrypt
and decrypt 100KB text file.

The time comparison between AES-128 and EAES-256; AES-
192 and EAES-384; AES-256 and EAES-512 shows that
encryption and decryption times are almost same between AES
and EAES for 100KB text file. However, EAES versions are
nearly some milliseconds slower than existing AES.

Table 4. Time taken to encrypt and decrypt 100KB text file

http://www.astesj.com/

A. K. Azad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56(2018)

www.astesj.com 55

Alg. AES-128 AES-192 AES-256 EAES-256 EAES-384 EAES-
512

Time(s)

Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec.

0.069 0.278 0.069 0.332 0.084 0.393 0.062 0.285 0.062 0.354 0.084 0.401

0.053 0.285 0.069 0.332 0.069 0.400 0.062 0.285 0.069 0.352 0.069 0.416

0.053 0.279 0.053 0.332 0.079 0.384 0.052 0.285 0.062 0.354 0.084 0.401
Average
Time(s) 0.058 0.280 0.064 0.332 0.077 0.392 0.059 0.285 0.064 0.353 0.079 0.406

Table 5. Time taken to encrypt and decrypt 200KB text file

Alg AES-128 AES-192 AES-256 EAES-256 EAES-384 EAES-512

Time(s)

Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec. Enc. Dec.

0.100 0.554 0.147 0.670 0.132 0.791 0.100 0.599 0.115 0.707 0.147 0.809

0.100 0.577 0.100 0.693 0.138 0.793 0.100 0.601 0.122 0.707 0.138 0.817

0.084 0.583 0.122 0.664 0.131 0.791 0.100 0.602 0.125 0.702 0.131 0.822

Average
Time(s) 0.095 0.571 0.123 0.676 0.134 0.792 0.100 0.600 0.120 0.705 0.139 0.816

Table 5 compares the time taken between AES-128 and
EAES-256; AES-192 and EAES-384; AES-256 and EAES-512;
and again shows that encryption and decryption times are almost
same between AES and EAES for 200KB text file while EAES
versions are some milliseconds slower than AES. Moreover, for a
200KB text file, the encryption and decryption time is clearly
greater than the time taken for 100KB text file for all versions of
AES and EAES as expected. Parallel Execution of AES-CTR
Algorithm Using Extended Block Size [15] was proposed in 2011
that can be used to increase the performance of real-time uses of
proposed EAES.

5. Strength of Proposed EAES Algorithm

The number of alternative keys and times taken by the brute-
force attack to get the original cipher key are listed in Table 6. The
authors have proposed an approach [16] that uses genetic
algorithm and neural network in S-box. This feature can also be
used to increase the security of proposed EAES.

Table 6. Average time required for exhaustive key search

Key Size
(bits)

Number of
Alternative keys

Time Required at 109
Decryption/Sec

Time Required at
1013 Decryption/Sec

256 2256≈ 1.2 × 1077 2255 ns = 1.8 × 1060 years 1.8 × 1056 years
384 2384≈ 3.9 × 10115 2383 ns = 6.2 × 1098 years 6.2 × 1094 years
512 2512≈ 1.34× 1077 2511 ns = 2.1 × 10137 years 2.1 × 10133 years

5.1 Strength Against Different Attacks

 Several cryptanalysis attacks such as linear attack, algebraic
attack, SAT-solver and hybrid attack, Side channel attack,
distinguishing and related-keys attack revised in [17] and are very
important for AES. EAES increases algorithm complexity and
security against those attacks.

5.1.1 Biclique Attack

Still now, the best publicly known single-key attack on AES
is biclique attack. It uses a computational complexity of 2126.1,
2189.7 and 2254.4 for AES-128, AES-192, and AES-256 respectively.
It is the only publicly known single-key attack on AES that attacks
the full number of rounds. Previous attacks have attacked round
reduced variants (typically variants reduced to 7 or 8 rounds). This

attack is only theoretical but not practical because it’s high
complexity as mentioned above. But it describes many safety
margins of AES such as round numbers and key sizes. The
proposed algorithm uses higher key sizes that are two times larger
than AES which ensures more security for this type attack.

5.1.2 The Basic Attack

The authors placed a new stage between SubBytes and
ShiftRows so that the algorithm becomes obsolete to basic attack.
The scheme used for the basic attack will not be applicable for
this algorithm. This extra stage of key addition ensures the
nonlinearity of this algorithm.

5.1.3 The Square Attack

The “Square” attack utilizes the byte-oriented structure of
Square cipher and is a dedicated attack on Square. This attack is
also valid for AES, as AES inherits many properties from Square.
The attack is independent of the multiplication polynomial of
MixColumns, the key schedule and the specific choice of
SubBytes and is also known as a chosen plaintext attack. It is
faster than an exhaustive key search for AES versions of up to 6
rounds. However, no attacks faster than exhaustive key search
have been found for 7 rounds or more. The proposed algorithm
uses two different key schedules and two addition of cipher key
that ensures high diffusion. So it ensures extra security to this
algorithm.

5.1.4 Related-key Attacks

In this type of attacks, using a chosen relation, the cryptanalyst
can do cipher operations with different unknown or partly
unknown keys. The high diffusion and non-linearity key schedule
of AES makes it very inviolable for this attack. The proposed
algorithm uses two different key schedules with the same
complexity as AES that ensures higher security than AES for this
type of attack.

6. Conclusion

Security of this algorithm is higher than any other symmetric
ciphers at present. In real life this algorithm can be implemented
and used in applications like smart phone apps, real-time
multimedia communication, and private network communications,
SSL communications, ATMs etc with increased security than
existing AES. The proposed algorithm is implemented using C
programming language and then tested it with some plaintext
blocks. It can also be easily implemented by other high level
languages like C++, JAVA, C#, Python etc. The performance
results are shown and compared with AES. Time consumptions
were approximately same as AES but the security was higher than
AES. This algorithm has just been developed, implemented and
tested for performance analysis. The complexity and security of
this algorithm have been evaluated theoretically. It is found that
this algorithm is more secure than AES. But it is essential to
analyze the result of the algorithm for various practical attacks.
That defines the future works of the proposed algorithm.

References

[1] J. Daemen and V. Rijmen, "AES Proposal: Rijndael" in: Proc. first AES
conference, 1998.

http://www.astesj.com/

A. K. Azad et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 51-56(2018)

www.astesj.com 56

[2] N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, D.
Whiting, “Improved Cryptanalysis of Rijndael” Fast Software Encryption
Lecture Notes in Computer Science, 213-230, 2001.
https://doi.org/doi:10.1007/3-540-44706-7_15

[3] H. Gilbert, T. Peyrin, “Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations” Fast Software Encryption Lecture Notes in Computer
Science, 365-383, 2010. https://doi.org/doi:10.1007/978-3-642-13858-4_21

[4] A. Bogdanov, D. Khovratovich, C. Rechberger, “Biclique Cryptanalysis of
the Full AES” Lecture Notes in Computer Science Advances in Cryptology –
ASIACRYPT 2011, 344-371, 2011. https://doi.org/doi:10.1007/978-3-642-
25385-0_19

[5] B. Tao, H. Wu, “Improving the Biclique Cryptanalysis of AES” Information
Security and Privacy Lecture Notes in Computer Science, 39-56, 2015.
https://doi.org/doi:10.1007/978-3-319-19962-7_3

[6] A. Mohd, Y. Jararweh, L. Tawalbeh, “AES-512: 512-bit Advanced
Encryption Standard algorithm design and evaluation” 7th International
Conference on Information Assurance and Security (IAS), 2011.
https://doi.org/doi:10.1109/isias.2011.6122835

[7] Y. Chen, K. Li, X. Fei, Z. Quan, K. Li, “Implementation and Optimization of
AES Algorithm on the Sunway TaihuLight” 17th International Conference
on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), 2016. https://doi.org/doi:10.1109/pdcat.2016.062

[8] “Sunway TaihuLight” - Wikipedia. (n.d.). Retrieved March 24, 2018, from
https://en.wikipedia.org/wiki/Sunway_TaihuLight

[9] M. Masoumi, M. H. Rezayati, “Novel Approach to Protect Advanced
Encryption Standard Algorithm Implementation Against Differential
Electromagnetic and Power Analysis” IEEE Transactions on Information
Forensics and Security, 10(2), 256-265, 2015.
https://doi.org/doi:10.1109/tifs.2014.2371237

[10] S. Savitha, S. Yamuna, “Implementation of AES algorithm to overt fake keys
against counter attacks” International Conference on Computer
Communication and Informatics (ICCCI), 2016.
https://doi.org/doi:10.1109/iccci.2016.7480017

[11] G. Manjula, H. S. Mohan, “Constructing key dependent dynamic S-Box for
AES block cipher system” 2nd International Conference on Applied and
Theoretical Computing and Communication Technology (iCATccT), 2016.
https://doi.org/doi:10.1109/icatcct.2016.7912073

[12] S. Vatchara, K. Piromsopa, “An Implementation of AES-128 and AES-512
on Apple Mobile Processor” 14th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), 2017. https://doi.org/doi:10.1109/
ecticon.2017.8096255

[13] “Advanced encryption standard (AES)” 2001.
https://doi.org/doi:10.6028/nist.fips.197

[14] M. J. Dworkin, “Recommendation for block cipher modes of operation” 2001.
https://doi.org/doi:10.6028/nist.sp.800-38a

[15] N. Tran, M. Lee, S. hong, S. Lee, “Parallel Execution of AES-CTR Algorithm
Using Extended Block Size” 14th IEEE International Conference on
Computational Science and Engineering, 2011.
https://doi.org/doi:10.1109/cse.2011.43

[16] K. Kalaiselvi, A. Kumar, “Enhanced AES Cryptosystem by Using Genetic
Algorithm and Neural Network in S-Box” IEEE International Conference on
Current Trends in Advanced Computing (ICCTAC), 2016,
https://doi.org/doi:10.1109/icctac.2016.7567340

[17] D. M. Alghazzawi, S. H. Hasan, M. S. Trigui, “Advanced Encryption
Standard - Cryptanalysis Research” International Conference on Computing
for Sustainable Global Development (INDIACom), 2014,
https://doi.org/doi:10.1109/indiacom.2014.6828045

http://www.astesj.com/
https://doi.org/doi:10.1007/978-3-319-19962-7_3
https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://doi.org/doi:10.1109/icatcct.2016.7912073
https://doi.org/doi:10.1109/
https://doi.org/doi:10.6028/nist.sp.800-38a
https://doi.org/doi:10.1109/icctac.2016.7567340

	2. Background
	3. Proposed Extended AES (EAES)
	3.1. Key Division
	3.2. Encryption or Cipher
	3.2.1 SubBytes, ShiftRows and MixColumns Transformation
	3.2.2 AddFirstRoundKey Transformation
	3.2.3 AddSecondRoundKey Transformation

	3.3. Decryption or Inverse Cipher
	3.3.1 InvShiftRows, InvSubBytes and InvMixColumns Transformation
	3.3.2 AddFirstRoundKey and AddSecondRoundKey Transformation

	4. Performance Analysis
	5. Strength of Proposed EAES Algorithm
	5.1.1 Biclique Attack
	5.1.2 The Basic Attack
	5.1.3 The Square Attack
	5.1.4 Related-key Attacks

	6. Conclusion
	References

